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ABSTRACT:  

Porosity evolution at reactive interfaces is a key process that governs the evolution and 

performances of many engineered systems that have important applications in earth and 

environmental sciences. This is the case, for example, at the interface between cement 

structures and clays in deep geological nuclear waste disposals. Although in a different 

transport regime, similar questions arise for permeable reactive barriers used for 

biogeochemical remediation in surface environments. 

The COMEDIE project aims at investigating the coupling between transport, hydrodynamics 

and chemistry when significant variations of porosity occur. The present work focuses on a 

numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The 

use of reactive transport simulation tools like Hytec and Crunch provides predictions of the 

physico-chemical evolutions that are expected during the future experiments in laboratory. 

Focus is given in this paper on the evolution during the simulated experiment of precipitate, 

permeability and porosity fields. 

A first case is considered in which the porosity is constant. Results obtained with Crunch and 

Hytec are in relatively good agreement. Differences are attributable to the models of reactive 

surface area taken into account for dissolution/precipitation processes. Crunch and Hytec 

simulations taking into account porosity variations are then presented and compared. Results 

given by the two codes are in qualitative agreement, with differences attributable in part to the 

models of reactive surface area for dissolution/precipitation processes. As a consequence, the 

localization of secondary precipitates predicted by Crunch leads to lower local porosities than 

for predictions obtained by Hytec and thus to a stronger coupling between flow and 

chemistry. This benchmark highlights the importance of the surface area model employed to 

describe systems in which strong porosity variations occur as a result of 
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dissolution/precipitation. The simulation of highly non-linear reactive transport systems is 

also shown to be partly dependent on specific numerical approaches. 

 

1. Introduction 

Porosity evolution is a key process that governs the evolution and efficiency of many 

engineered systems that have important applications in earth and environmental sciences. This 

is the case, for example, at the interface between waste packages structures (cement, carbon 

steel) and clays in deep geological nuclear waste disposals [1, 2]. Similar questions arise, 

although under different transport conditions, for permeable reactive barriers used for 

biogeochemical remediation in surface environments [3, 4]. Other examples of porosity 

clogging with a strong reduction of permeability resulting in unfavorable conditions can be 

found in oil reservoir engineering [5], in hydrothermal systems [4, 6], in soil science with 

“bioclogging” in landfill leachate treatment operations and constructed wetlands for waste 

water disposal [7, 8]. This phenomenon does not necessarily produce adverse conditions, for 

instance in the case where porosity decrease does not directly affect the permeability or even 

induces a decrease of the efficiency of initial preferential pathways by increasing residence 

time [9]. It may also improve the confinement properties where circulation of fluids is 

undesirable by building a barrier to aggressive agents, thus reducing the reactivity between 

regions in a system. 

Reactive transport simulation tools, used to simulate the geochemical evolution of porous 

media, frequently integrate a description of porosity/permeability variations due to 

mineralogical transformations coupled to flow field evolution [10-12]. However, because of 

the complexity and non-linearity of processes involved, this does not guarantee that 

equivalent (or even comparable) predictions will be obtained with these different modelling 



 4 

tools. In order to improve our confidence in numerical predictions and to identify critical 

features of the models involved, it is necessary to develop comparative simulations of 

dedicated experiments or systems.  

Such an experiment was proposed and performed in a 1-D geometry by Lagneau [13]. A 2-D 

version of the same system, named COMEDIE-2D, was explored by Trotignon et al. [14]. 

The present paper is a further step towards such a 2-D experiment which will contribute to the 

validation of reactive transport simulation tools. Two codes, Hytec [10] and Crunch [15], 

using different simulation approaches and algorithms were used to simulate the same two-

dimensional porous medium in which strong porosity/permeability variations occur due to 

dissolution/precipitation reactions. In this paper, the characteristics of the system will be first 

introduced. The two simulation tools will then be presented with emphasis given to their 

respective porosity/permeability models. Finally, after a description of the simulation results, 

elements will be proposed to explain the observed differences. 

 

2. Definition of the experimental set-up 

A 2-D cementation experiment in a porous medium was previously dimensioned with Hytec 

[14]. The selected experimental design involves the successive precipitation and perforation 

of a clogging obstacle made with calcium oxalate. The constraints imposed to design this 

experiment are: 

- The desired characteristic length of the chamber is ~10 cm so that construction and 

instrumentation of the future experiment at the laboratory remains feasible; 

- The duration of this experiment is about 3 months. 
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Note that the size of the experimental system has been modified since the original design 

presentation in [14] (140 mm instead of 280 mm) in order to shorten the total experiment 

duration. 

Reactants (oxalate ions) are injected with a constant flux in a porous medium, which locally 

contains the mineral portlandite. The chemical reaction between the inlet solution and 

portlandite (Ca(OH)2) leads to the precipitation of calcium oxalate (CaC2O4.H2O) following 

the reaction: 

 

                                −− +⋅⇒++ 2OHOHOCaC OHCa(OH)OC 24222
2
42  (1) 

 

This transformation induces a volume decrease of 33 mL per mol of reacted portlandite, 

leading to clogging of the porous medium. The experimental chamber is a square box 

(140x140 mm²) (Figure 1) with two inlets (20 mm) and one outlet (40 mm) for fluid 

circulations. The porous medium is homogeneous and composed of quartz sand (considered 

as a chemically inert phase in the simulations), except for a rectangular zone (20 mm of 

width) located in the middle of the box which contains also portlandite grains. The main 

properties of this chamber are reported in Table 1. 

The initial effective properties of each zone were evaluated with the hypothesis that quartz is 

composed of regular spherical grains (with a diameter of about 100 µm) and of very small 

portlandite grains (with a diameter around 1 µm) dispersed in the interstices of the quartz 

grains. The fluid inlets 1 and 2 are supplied respectively with dilute solutions of sodium 

chloride and sodium oxalate with physical and chemical properties reported in Table 2. A 

constant flux of solutes is imposed as boundary condition at the inlets, whereas the outlet 

boundary condition is a constant head. 
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The activity of H2O was fixed at 1 in all simulations. The oxalate ion C2O4
2− was introduced 

as a new basis species in the thermodynamic database, implying that the system is not in 

overall redox equilibrium. Several aqueous complexes between the oxalate ion and calcium, 

sodium and the proton were also introduced using the thermodynamic constants of the 

Harwell Hatches database [16]. The equilibrium constant for the Ca-oxalate precipitate was 

calculated from data given in Lide [17]. The chemical species considered in the simulation 

were restricted and equilibrium constants for the considered reactions are listed in Table 3.  

 

3. Constitutive equations and fundamental differences 

between numerical tools 

3.1. Fundamental equations 

The governing equations of the problem are obtained in the framework of the 

physicochemistry of nondeformable porous media. Since all physical quantities relate to a 

representative elementary volume (REV) of porous medium, the mass balance of species and 

transport equations are represented by means of partial differential operators using position, 

time, concentration, porosity, permeability, etc as continuous variables. The different 

chemical concentration fields are treated using the classical approach of chemical components 

[18-21]: all the m species Xj with concentration cj in the system can be written using a 

minimum basis of n components (represented by basis species Ci, i = 1, …, n) with total 

concentration ci
tot (i = 1, …, n < m), using the stoichiometric coefficients αij, so that: 

[ ] ∑
=

↔∈∀
n

i
jiij XC

1

   ,    m1,...,  j α     (1) 
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The chemical system is modeled by a system of algebraic (thermodynamic equilibrium) 

and/or partial derivative (kinetic control) equations. The transport equation of a chemical 

component may be written as: 

( ) ( ) ( )mjj XXRU-D
t

X
,...,X  X graddiv

 

 
1

*j +=
∂

∂ ω
   (2) 

where ω  is the local porosity, U  the Darcy velocity and *D  the dispersion-diffusion tensor 

and R denotes the source/sink term caused by all chemical reactions affecting the  chemical 

component. In this equation, the concentrations are given in mole per volume of solution. In 

the present case, diffusion and dispersion are assumed isotropic and *D  reduces to a scalar 

form, DUD += α*  (m2.s–1), where D is the effective diffusion coefficient assumed to take 

the same value for all solutes and α (m) is the dispersivity of the porous medium. The choice 

of isotropic dispersion is imposed by the current version of Hytec which allows only isotropic 

dispersion tensor. All reactions between aqueous species are considered at equilibrium. 

 

Several of the physical laws governing chemistry and transport are not identically described in 

the reactive transport codes Crunch [1] and Hytec [10] used in this work. Table 4 and Table 5 

present the most significant disparities between Hytec and Crunch, which could be sources of 

discrepancies in the benchmark calculations. 

 

Two phenomenological laws are assumed to relate porosity, permeability and the diffusion 

coefficient of solutes in the porous medium. In the case of Hytec, the intrinsic permeability ks 

at saturation (expressed in unit of square distance), is related to porosity, with a normalized 

form of the Kozeny-Carman relationship adapted by Lagneau [13]:  

( )
( )

2

0

3

0
0 1
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−
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= ω

ω
ω

ωkkS     (3) 
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And the dispersion coefficient is related to porosity and saturation as follows: 

U)(* α
ω
θ

ω += eDD      (4) 

Where α is the dispersivity, θ is the saturation and De is the effective diffusion coefficient in 

saturated conditions. De is a function of ω according to Archie’s modified law: 

a

c

c
ee DD 









−
−

=
ωω
ωω

ωω
0

0)()(     (5) 

Where ω0 is the initial porosity, ωc is a critical minimal porosity below which diffusive 

transfer is negligible and a is Archie’s empirical coefficient. In this study, the critical porosity 

in Hytec (ωc) is set to 0 in order to obtain expressions that can match the diffusion law used in 

Crunch. Equations (3) and (5) are semi-empirical and greatly simplified descriptions of 

processes that are very complex at the microscopic scale. However, in many cases they 

describe the expected behavior at the macroscopic scale [22]. 

 

The dependence of dispersivity α on porosity and permeability changes is expected to be 

small [23], although dispersion (i.e. Uα ) should decrease progressively with increasing 

cementation of the porous medium as the Darcy velocity of the fluid drops. The flow velocity 

evolution is assumed to be governed by Darcy’s law, written here using the hydraulic head h: 

( )hKU sgrad−=      (6) 

and by the continuity equation: 

( ) ( )
0div =

∂
∂

+
t

u
ρω

ρ
ρ

     (7) 

where u
ρ

 is the fluid pore velocity (related to the Darcy velocity by uU
ρρ

 ω= ), ρ is the fluid 

density and Ks is the hydraulic conductivity at saturation (expressed in unit of distance per 
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unit of time), also called dynamic permeability. The dynamic permeability Ks is directly 

related to the intrinsic permeability ks by using the density and dynamic viscosity of the fluid. 

Under several assumptions (compressibility, etc…), the combination of (6) and (7) leads to 

the diffusivity equation, i.e.: 

( )( ) q
t

h
ShK ss +

∂
∂

=grad div       (8) 

where Ss (m
–1) is the storage coefficient and q is a source term accounting here for porosity 

variations due to chemical reactions. 

The reference simulations conducted with Hytec were done with the assumption of local 

chemical equilibrium. This is equivalent to considering infinite reacting surface areas for 

minerals, whatever the local porosity. Hytec is also able to work in kinetic mode with 

different possibilities for defining reaction rates and reactive surface areas, as summarized in 

Table 5. Several runs were conducted in kinetic mode with Hytec in order to evaluate the 

effects of finite reactions rates. 

 

In the case of Crunch [15], the intrinsic permeability ks follows the relation: 

3

0
0 






= ω
ωkks      (9) 

The relation between permeability and porosity described in equation (9) is not strictly 

equivalent to the relation used in Hytec (equation (3)); the difference of permeability values is 

negligible for porosity values near ω0, but the difference can reach forty percent at the 

maximum of the clogging phase. This difference will have to be considered in the 

interpretation of eventual discrepancies between predictions. 
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The combined dispersion-diffusion tensor is defined in Crunch as the sum of the mechanical 

or kinematic dispersion coefficient D’
 and the molecular diffusion coefficient, D0, in water 

divided by the formation factor, F: 

       
F

D0'DD +=                (10) 

Usually, F is defined as the ratio of the resistivity of the saturated porous medium over the 

resistivity of the pore solution alone. F may also be defined in numerous ways, but here a 

definition based on Archie’s Law is used which gives the formation factor the following form: 

mF −=ω        (11) 

where m is the “cementation exponent". It is necessary that a equals m (see Table 1, first row) 

in order to obtain equivalent expressions in Crunch and Hytec. In addition, the following 

relationship has to be respected between D0 (Crunch) and De (Hytec): 

( )
)()(

0

0
0 Hytec

D
CrunchD

a

e

ω

ω
=        (12) 

In these conditions, variations of the diffusion coefficient with porosity will be identical in 

Hytec and Crunch simulations. In this presentation of the benchmark, coefficients a and m 

were arbitrarily set to 1: this corresponds to a porous medium with no tortuosity. Actually, 

values of a (resp. m) greater than 1 would be required to model properly the zone containing 

portlandite in which porosity has a more complex structure than in the other zones filled only 

with quartz sand. 

Dissolution/precipitation reactions are modeled (necessarily in Crunch and optionally in 

Hytec) by using kinetic rate laws [15]. The constraint of local equilibrium may be approached 

by using high reaction rates. Several possibilities are available in Crunch in order to describe 

reactive surface area, ‘bulk surface area’ (m2 per m3 of porous medium) or ‘specific surface 

area’ (m2 per gram of solid), whereas Hytec needs a ‘bulk surface area’ in units of m2 per m3 
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of solution. In addition, reactive surface areas of minerals are updated in Crunch differently 

depending on whether the minerals are primary or secondary phases. In particular, reactive 

surface area of secondary minerals not initially present that redissolve is set arbitrarily to  

1000 m2/m3 in Crunch, whereas Hytec needs the definition of some initial nuclei (set in this 

study to 1 m2/m3 of solution). These assumptions lead to asymmetrical 

dissolution/precipitation laws [15] summarized in Table 5. 

 

Note that Crunch surface area models are designed so that all reactive surface areas tend to 0 

when porosity tends to 0 thanks to the (ω/ω0)
2/3 term (Table 5). This is not always the case in 

Hytec. For example, when the reactive surface area is specified as a specific surface area, 

because the multiplying (ω/ω0)
2/3 term is not included in this model, it doesn’t ensure that the 

surface area tends to 0 when porosity tends to 0. All these specific features and approaches 

make very difficult the exact reproduction of the same formulation with both codes. 

The update of flow in Crunch (equation (8)) is done by taking into account only the source 

term due to porosity variations. The effect of storage is neglected. 

Finally, it must be noticed that the activity correction model used in Hytec is the truncated 

Davies formula, while Crunch uses the Debye-Hückel activity correction model [24].  

 

3.2. Numerical schemes 

The operator splitting method is, among the several numerical methods available for the 

integration of reactive transport models, a classical approach proposed by Yeh and Tripathi 

[19]. Several variants of this approach, in which the operators describing respectively 

transport and chemical reactions are solved separately, exist [21]. Transport and chemistry are 

solved one after the other within a single time step. In Hytec, the operator splitting method is 

the “sequential iterative approach” described by De Windt et al. [25], in which, at each time 
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step, iterations between the transport and chemistry operators are performed until a definite 

convergence criterion is achieved. The chemical solver for Hytec is the geochemical module 

Chess [10], and the transport solver for Hytec is R2D2, which uses a finite volume scheme 

[26]. In Crunch, the operator splitting approach OS3D [27] is a non iterative algorithm, in 

which the time step magnitude is constrained by a criterion that ensures that the error due to 

operator splitting remains sufficiently small. Yeh and Tripathi [19] cite the major advantage 

of the operator splitting or sequential iteration approach as the lower memory requirements of 

these methods compared to the global implicit and the greater speed at which a single time 

step can be completed. In addition, probably the most significant advantage of the time 

splitting approach is the ability to use specific algorithms for high Peclet number transport 

(i.e., advection dominating over dispersion and molecular diffusion). OS3D uses a third order 

accurate total variation diminishing or TVD method proposed by Gupta et al. [28]. The TVD 

algorithm results in significantly less numerical dispersion than the upwind scheme used in 

the global implicit approach (GIMRT [29, 30], for example). 

 

Both simulation tools update the local permeability after each time step of the calculation. 

This explicit scheme requires that the time step remains sufficiently small in case of strong 

couplings between flow and chemical reactions. The sensitivity of results to time step 

magnitude was therefore explored by allowing in different runs the maximum time step values 

from ~1300 s to ~40 s. The mesh used is composed of squares with identical sizes (3.3 mm of 

edge size) over the entire extent of the chamber.  

3.3. Kinetics vs local equilibrium issues 

As quoted in §3.1, an important difference between Crunch and Hytec is related to the 

description of dissolution/precipitation reactions. In Crunch, the only possibility is to use an 

explicit kinetic rate law to describe mass transfer between solution and mineral phases. In 
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Hytec, it is possible to describe those mass transfers by kinetic rate laws, or to use, in the case 

of fast reactions, the hypothesis of local equilibrium between minerals and the solution (see 

Table 5). Under this assumption, mass transfer between mineral phases and the solution are 

calculated so that local thermodynamic equilibrium is achieved. In the present study, Hytec 

simulations presented in the following section were conducted with the assumption of local 

equilibrium (assumption taken in the previous dimensioning work of the COMEDIE-2D 

experiment [14]). Some results of Hytec with the kinetic hypothesis will only be presented in 

the discussion part. High rate constants were assumed in Crunch experiments to cause fast 

mass transfer, thus approaching the local equilibrium condition (see Table 5).  

 

Characteristic time scales for transport and chemistry processes can be evaluated as follows. 

The characteristic length L is the size of discretization cells, i.e. 3.3 10-3 m. The order of 

magnitude of the Darcy fluid velocity U
ρ

 is in the range of 10-8-10-6 m.s-1. The timescale of 

advective transport through an individual cell is thus: 

s
U

L
t 53
1 10  3.310  3.3 −≈=∆     (13) 

The dispersion length is α = 2 10-2 m and the molecular diffusion coefficient is  

D = 10-9 m2.s-1. The timescale of diffusive-dispersive transport through an individual cell is 

thus: 

        
( )

s
DU

L
t 42

2

2 1010  5 −≈
+

=∆
α

    (14) 

So, these transport parameters result in mixed diffusive and advective control (Peclet number, 

Pe = 3 10-2 – 3 and Courant number, Nc = 10-3 – 102).  
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Kinetic rates krate were set to 10-5 mol.m-2.s-1, the bulk surface area Abulk to 103 m2
solid.m

-3
porous 

medium for both portlandite and Ca-oxalate in Crunch simulations. Higher values of reaction 

rates caused an irreversible collapse of the time step in the version of Crunch used in this 

study.  This difficulty is now overcome in the subsequent versions of Crunch. In kinetic 

simulations run with Hytec, kinetic rates were set to 4 10-8 mol.m-2.s-1 (resp. 3 10-8 mol.m-2.s-

1) for portlandite (resp. Ca-oxalate) and the specific surface area As to 1 m2.g-1
mineral for both 

minerals. The solubility of portlandite is 2 10-2 mol.L-1 of solution at pH~12.5. As the porosity 

is ω ~0.2, the solubility of portlandite is thus C~4 mol.m-3 of porous medium at pH~12.5. The 

timescale of chemical transfer is thus given by the expression: 

s
Sk

C
t

rate

 400~3 =∆ , for Crunch and st  45~3∆ , for Hytec  (15) 

Note however that the solubility of portlandite may be significantly increased in case of pH 

perturbation and thus could potentially lead to much higher chemical transfer characteristic 

times. Also, clogging may induce local concentration of flow lines with higher Darcy 

velocities and thus shorten characteristic transport times. This shows that, for simulations run 

in kinetic mode, although the characteristic time for portlandite dissolution is rather small, an 

overlap between characteristic times for transport and chemistry is possible during the course 

of the simulated experiment.  

Calculations were conducted on a UNIX work-station for Hytec v.3.5.6 and in DOS 

environment for Crunch v.2006 (in both cases Pentium IV 3.2 GHz). Duration of calculation 

ranged from 1 to 6 hours. Post processing was performed using Tecplot®, MSExcel® and 

Hype®, a tool dedicated to Hytec. 

4. Results of simulations 

In a first stage (§4.1), the initial fluid velocity fields computed by Hytec and Crunch are 

compared; spatial profiles of non reactive tracers transported under stationary flow conditions 
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are also compared. The evolution of the reactive system without porosity update is then 

simulated (§4.2). Finally (§4.3), results of Crunch and Hytec simulations taking into account 

processes coupled with porosity variations are compared. Focus is placed in this presentation 

on the evolution during the simulated experiment of precipitate, permeability, porosity and 

velocity fields. 

4.1. Stationary hydraulic and non-reactive transport of 

species 

411. Steady state hydraulics 

Profiles of the x- and y-components of the initial Darcy velocities are recorded on a line 

located in the middle of the box (Line 1 in Figure 1) and presented in Figure 2 for Crunch and 

Hytec simulations. 

The x-component value of the Darcy velocity (Ux) progressively increases from the left to the 

right side of the cell, from 0 to 10-7 m.s-1, except in the region of the portlandite wall where 

the velocity remains constant. Finally, Ux decreases, as expected, and it reaches zero on the 

chamber boundaries. Uy presents negative values in front of the portlandite wall and positive 

values behind this wall. Steep transitions are observed between the portlandite wall and the 

rest of the chamber as a result of the difference in permeability values between these regions 

(one order of magnitude initially). Crunch and Hytec velocity fields can be considered 

identical except for few points located behind the portlandite wall for which the differences 

remain low (<10%). Analogous profiles, not shown here, indicate that Hytec and Crunch flow 

fields are very similar whatever the line considered. 
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412. Dispersion and diffusion of non reactive tracers 

The transport of a tracer in the initial steady state flow velocity field presented in §4.1.1 was 

computed with Crunch and Hytec as a further elementary test. A solution containing an inert 

species is continuously injected in the box by Inlet 2 (Figure 1) with a total concentration of 1 

µmolal. Spatial profile of the tracer concentration is recorded on Line 1 (Figure 1) during 3 

days. The concentration profiles (Figure 3) obtained with Hytec and Crunch are almost 

superposed for each time considered. The most significant difference between the two codes 

is observed for points located at the extreme left of the box (low X-coordinates), but remains 

less than 10%. Analogous profiles, not shown here, indicate that the dispersion recorded with 

Hytec and Crunch is very similar whatever the line considered. 

 

These preliminary studies (§4.1.1 and §4.1.2) show that initial flow fields computed by 

Crunch and Hytec are very similar and that concentration profiles of a tracer transported and 

dispersed in this flow field are also very close. In the following sections, the complete 

experiment involving dissolution and precipitation, first with a constant porosity and then 

with porosity update is set up and simulated with both codes. 

4.2. Simulation of the complete experiment with fixed 

porosity 

In this set of simulations, the 2D experiment described in §2 is simulated without an update of 

the porosity and permeability fields, which therefore retain their initial values. Injection of 

oxalate ions by Inlet 2 (Figure 1) leads to massive precipitation of calcium oxalate in the 

region where a high calcium source term is located, i.e. at the location where portlandite is 

initially present (Q2 region). When this local solid state calcium source is consumed, the 

newly formed calcium oxalate begins to dissolve because the injected fluid contains no 
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dissolved calcium (Table 2) and is therefore undersaturated with respect to calcium oxalate. 

Under these conditions, the obstacle created by the precipitation of calcium oxalate is 

expected to perforate. Figure 4 and Figure 5 present the variation with time of the portlandite 

and Ca-oxalate volume fraction simulated with Crunch (upper row) and Hytec (local 

equilibrium hypothesis, lower row). The portlandite begins to dissolve at the upper part of the 

wall and is replaced by the Ca-oxalate as shown in Figure 5. Figure 4 and Figure 5 show 

relatively good agreement between Crunch and Hytec for the portlandite dissolution process. 

Slight differences are however visible with respect to the Ca-oxalate precipitation: i) the 

maximum Ca-oxalate volume fraction precipitated is higher (~29 %) for Crunch than for 

Hytec (~26 %), ii) the spatial distribution of the Ca-oxalate precipitate is more spread out in 

the Hytec results than in Crunch. The perforation of the calcium oxalate wall is also predicted 

to occur sooner with Crunch (55 days) than with Hytec (90 days). 

Figure 6.a shows the variation with time of mineral concentrations cumulated over the entire 

chamber during the experiment described above. As previously noticed in Figure 4, 

portlandite dissolution is similar for Crunch (dotted line) and Hytec (continuous line) with an 

exponential-like decrease. During the first 20 days, the integral precipitation of calcium 

oxalate over the chamber is equivalent for both simulations. After this time, the total Ca-

oxalate concentration becomes lower with Crunch, with a maximum concentration reached 

earlier. 

Note that the maximum time step was constrained for both codes to the same value (40 

seconds) and that both codes reached this time step value. Effects of maximum time step 

values will be briefly presented in the discussion section. 
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4.3. Simulation of the complete experiment with porosity and 

permeability update 

As in the case with the simulations presented earlier, injection of the oxalate rich fluid leads to 

the transformation of the portlandite rich zone into a calcium oxalate wall in simulations in 

which porosity and permeability are updated. Because of the large increase in mineral 

volumes in reaction (1) and following porosity update, this wall will now divert significantly 

the flow lines. Major results obtained with Hytec (equilibrium hypothesis) and Crunch are 

displayed on Figure 6 to Figure 11. As previously, the maximum time step was constrained to 

the same value (40 seconds), which was reached by both codes. In both cases, portlandite 

dissolution (Figure 6.b and Figure 7) proceeds quite regularly from the top left in about the 

same time. Note however that the last remainder of portlandite is not located at the same part 

of the wall (in the middle for Crunch and at the bottom for Hytec, see Figure 7). Hytec and 

Crunch results display significant differences in the way the oxalate wall (Figure 8 and Figure 

9) and the associated flow-fields evolve. First, the wall perforation occurs after ~50 days for 

Crunch, whereas this event happens after only ~80 days for Hytec. Both codes predict a 

perforation localized at the top of the box. It is also clear that in the Crunch simulations, the 

conversion of portlandite to Ca-oxalate builds a much more impermeable obstacle than in 

Hytec simulations (Figure 10 and Figure 11), leading to a much stronger diversion of flow 

lines (Figure 8 and Figure 9). This is consistent with the higher concentration level reached by 

Ca-oxalate in Crunch results (> 28.1 vol. %) by comparison to Hytec (~25.5 vol. %). The 

integrated volume fraction of portlandite dissolved during this experiment (Figure 6.b) is very 

similar for both predictions, displaying an almost linear variation. For Ca-oxalate, the 

maximum reached is lower with Crunch, but happens for both codes after 40 days.  

The permeability profile along a vertical line (Line 2) situated in the oxalate wall (Figure 10) 

tends towards a nearly constant value before perforation in Hytec simulations, whereas a 
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significant difference in permeability always exists between the bottom and the upper part of 

this line in Crunch runs. The curve rebound observed in Crunch permeability profiles is due to 

the existence of a preserved island of portlandite. Very low permeabilities (~10-18 m2, locally) 

are obtained with Crunch after 70 days. A comparison of the temporal evolution of the 

porosity near the upper part of the Ca-oxalate wall (Figure 11) shows indeed that minimum 

porosities obtained with Crunch (~ 1  %) are much lower than for Hytec (~5 %). 

Finally, it should be noted, that very low concentrations of Ca-oxalate and portlandite are 

predicted in both Crunch and Hytec simulations to form as a result of precipitation after about 

1 month in the region between the portlandite obstacle and the outlet.  

5. Discussion 

Preliminary tests dealing with pure transport show that predictions by Hytec and Crunch of 

the advection, diffusion and dispersion of an inert species in the initial velocity field are in 

very good agreement. Some minor local differences (never above 10%) were found and could 

be attributed to a difference in the numerical dispersion in both codes. Although these 

discrepancies are small, they have to be kept in mind as possible sources of divergence in the 

global results. 

 

The test in which the experiment was simulated without porosity update (§4.2, Figure 4, 

Figure 5 and Figure 6.a) provides other clues to explain the differences in the predictions of 

the complete (fully coupled) experiment. The portlandite spatial distribution (Figure 4) is very 

similar for the two codes. The exponential decrease in the global portlandite quantity in the 

chamber with time (Figure 6.a), in a fashion similar to what occurs in a stirred tank reactor, is 

also very similar for Crunch and Hytec (total dissolution in ~75 days). In contrast, the spatial 

distribution of oxalate (Figure 5) displays significant differences after 20 days, even if at this 
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time the integrated quantity of precipitated oxalate is the same for Crunch and Hytec (Figure 

6.a). Although the scenario is qualitatively similar for both tools, the wall perforation happens 

much sooner in Crunch predictions. The local maximum concentration of oxalate is much 

higher in Crunch simulations (~ 28%) than for Hytec (~25%). Porosity and permeability being 

constant in this computation, the disparities observed here are thus related to the kinetic 

description of mineral dissolution/precipitation processes in Crunch. Careful examination of 

the integral curves (Figure 6.a), shows that a part of the calcium initially contained in 

portlandite never precipitates and escapes at the outlet. In the case of Crunch, this fraction of 

non precipitated calcium, escaping as dissolved species in solution, is one and a half larger 

than in Hytec. This is consistent with a limitation of precipitation in Crunch due to kinetics. 

Attempts were made to simulate this configuration, i.e. with no porosity update, using the 

kinetic mode of Hytec. The rate constant was given for portlandite and Ca-oxalate the value 

±10-5 mol.m-2.s-1 with 1 m2.g-1 of specific area. Kinetic runs performed with Hytec in these 

conditions gave results very close from the local equilibrium case, as well for portlandite and 

oxalate distributions. Other tests were made with Hytec in kinetic mode with a range of rate 

constants; however because of the fundamentally differing surface area norms of Hytec and 

Crunch (Table 5), it was never possible to simulate completely equivalent systems.  

It can be concluded from computations performed with this configuration that assumptions on 

variations of mineral surface area during the course of dissolution and precipitation has a 

major impact on flow pattern predictions. This seems to be specifically important for 

secondary mineral species for which the initial surface area is ill-defined, as well as the 

transition from precipitation to redissolution which is treated in different ways by the 

simulation tools. The local differences in spatial distribution of the oxalate (e.g. very high 

local concentrations with Crunch) are a specific feature that seems to be linked to the surface 

area models. 
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The simulations, in which porosity is updated (from Figure 6.b to Figure 11), show for both 

Crunch and Hytec that the overall portlandite dissolution is faster (total dissolution after 40 

days) than in the case with fixed porosity (Figure 6). The main difference in results remains 

that, in the case of Crunch simulations, an island of portlandite is temporarily protected from 

the aggressive solution as a result of the formation of a hermetic layer of Ca-oxalate. The 

faster dissolution is explained by the fact that the injected flow of dissolved oxalate is diverted 

by porosity evolution towards zones where portlandite dissolution is less advanced. So, local 

porosity reduction leads to a faster flushing of the experimental chamber with the oxalate 

containing solution and consequently to a faster and linear consumption of the portlandite 

mineral (Figure 6.b) instead of an exponential decrease. The integral curves (Figure 6.b) show 

in addition that the available calcium is more efficiently precipitated than in the fixed porosity 

case (Figure 6.a). Nevertheless, calcium escapes in greater quantity from the reaction chamber 

for the Crunch simulation in kinetic mode, which is physically correct. 

 The Ca-oxalate mineral distribution differs considerably between both predictions (Figure 8 

and Figure 9). Whereas the integrated volume fraction of Ca-oxalate over the chamber is 

lower in Crunch than in Hytec predictions, the minimum porosity with Crunch reaches 0.3%, 

compared to the ~5% obtained with Hytec. As previously discussed, such differences in the 

Ca-oxalate distribution most probably originate from the surface area model used. Therefore, 

the permeability decreases strongly (Figure 10), leading to a considerably higher coupling 

effect with flow in the case of Crunch. Another difference between codes concerns the 

permeability laws (see section 3.1). However, the differences in permeability models cannot 

explain these discrepancies, which have already been noted for simulations without porosity 

update. 
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In order to reproduce Crunch results with Hytec in kinetic mode, a qualitative analysis of the 

different rate limiting processes was conducted. If initial conditions of the porous medium are 

considered (i.e. 11 vol. % of portlandite in the obstacle, 19 vol.% porosity), complete 

conversion of the portlandite into Ca-oxalate should lead to a residual porosity of 8 vol.%.  

Both codes predict minimal porosities that are significantly lower than this value, which is 

based on a scenario in which calcium would locally precipitate (Figure 11). In addition, the 

Ca-oxalate precipitation at node N (Figure 1 and Figure 11), a point located far at the back of 

the obstacle, starts earlier in Crunch kinetic simulations than with Hytec at equilibrium. 

Among processes that potentially regulate the localization and concentration of the oxalate 

precipitate, the following were identified as the most relevant ones: 

- The influx of the fresh oxalate solution and its diversion by porosity reduction. 

- The precipitation rate of Ca-oxalate.  If this rate is too large, calcium dissolved from 

portlandite will not be able to be transported before precipitation and oxalate ions will 

also be immobilized locally. 

- The dissolution rate of portlandite.  If this rate is too small, too much dissolved oxalate 

will escape from the portlandite zone. 

- The magnitude of the diffusion-dispersion coefficients. 

Because of the large number of parameters and of the duration of computation, it was not 

possible to perform an exhaustive sensitivity analysis. A specific focus was given to the 

values of dissolution/precipitation rate constants and particularly to the observation that, as 

noted above, transport of calcium before immobilization requires a relatively slower 

precipitation rate for Ca-oxalate than the corresponding dissolution rate of portlandite. It was 

indeed found that some of the features observed in Crunch results could be reproduced with 

Hytec in kinetic mode when the dissolution rates of portlandite was set to -4 10-8 mol.m-2.s-1 ( 

1 m2.g-1) and the dissolution/precipitation rate of Ca-oxalate to ±3 10-8 mol.m-2.s-1 (1 m2.g-1). 
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For instance, minimum local porosities were lower (~3 % instead of ~5 %) and the perforation 

of the Ca-oxalate wall occurred after ~60 days, instead of ~80 days with Hytec at equilibrium 

(see §4.2). The evolutions at node N were also more consistent (Figure 12). Nevertheless, 

very low porosities as obtained in Crunch results could not be reached. These trials with 

Hytec in kinetic mode show that some important rate limiting factors controlling the spatial 

distribution of Ca-oxalate have been identified, but that a precise match of simulation results 

is presently not achievable because of the different models taken for surface area evaluation in 

the codes. 

 

Reaching very low porosities also results in a stronger coupling between chemistry and flow 

in Crunch simulations because of the cubic expression taken by the permeability (equations 

(3) and (9)). It was found that, due to this stronger coupling, Crunch results were more 

sensitive than Hytec to the maximum time step allowed during the run, especially because the 

code is non-iterative. Simulations performed only with the smallest time step tested in Crunch 

are presented here, but a sensitivity study was actually made on this parameter. For higher 

maximum time step, the wall perforation occurs later in time but equivalent quantitative 

differences still exist in the localization of the precipitates.  The sensitivity of the results to the 

time step used in Crunch reflects the way in which the code handles the updating of mineral 

volume fractions (and thus, porosity and permeability).  Because the mineral concentrations 

are only updated at the end of the time step, rather than computed implicitly within a time 

step; the time step should be calculated such as it does not overshoot the available mineral 

volume fractions. 

Future development of this project will follow two major lines:  

i) The present study has stressed the influence of the evolution of parameters such as the 

surface area as a function of the reaction progress. It led to the development in Hytec 
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(v.3.7) and Crunch (v2007) of a much larger set of reactive surface area models. Their 

implementation will make it possible to describe reactive porous media with a sounder 

scientific basis and will also allow for analytically equivalent comparison between 

codes. The sensitivity of predictions to spatial discretization will also be assessed by 

increasing the resolution of the discretization of the chamber.  

ii)  The design of the future laboratory experiment can now be considered as sufficiently 

mature. Although providing different results, predictions show that the time scale of 

cementation/perforation processes is comparable for both codes. The simulations also 

show that an acute description of the kinetics of precipitation and redissolution of the 

secondary mineral Ca-oxalate (in particular the surface area dependence of these 

successive processes) is crucial to explain and discriminate the predicted flow 

patterns. The acquisition of this rate law can be seen as a preliminary stage on the 

roadmap leading to the coupled 2D experiment. Several technical challenges have also 

to be overcome in order to construct the experimental design. A first difficulty will be 

met when dealing with solution density, because the oxalate rich fluid injected in the 

box is higher in density than pure water in equilibrium with portlandite. Such a 

difficulty can be overcome by initially filling the box with an appropriate electrolyte to 

minimize the density contrast. Also the initial filling of the reaction chamber will be a 

technically difficult operation: spatial heterogeneities (particularly in the portlandite 

wall) can be the cause of unexpected instabilities in the permeability evolution. The 

mechanical behavior of the variably consolidated quartz sand mixed with secondary 

precipitate could in addition restrict the range of initial portlandite enrichment in the 

central part of the reactor.  Monitoring and time analysis of pressure drop signals are 

thus important tools that need to be included in the complete experimental design.  

Among other achievements necessary to succeed in such an experiment, innovative 
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tracer techniques will be essential. In particular, a real-time tracking of mineral 

dissolution and precipitation processes inside the reaction chamber is desirable. The 

present idea for recording the mineral evolution within the chamber is to co-precipitate 

trace elements (Ba, Sr …), possibly as radioactive tracers, in the newly formed Ca-

oxalate phase. The feasibility of forming such solid solutions, however, requires 

additional research.   

Models that link texture and porosity are not well developed in the present state of the art in 

reactive transport codes. Approaches aiming at describing in a mechanistic way fluid flow and 

reactions in an individual pore have been explored by several teams (Adler et al. [31-34]; 

Scholes et al. [35]). The Comedie2D experiment will hopefully help to fill some of the gap 

between these microscopic approaches and larger scale reactive transport models. 

 

6. Conclusions 

Simulations of physical transformations occurring in porous media involving significant 

variations of porosity coupled to chemical transformations and flow were explored in a two-

dimensional reactor by using two different reactive transport modelling tools, Hytec and 

Crunch. 

Predictions by these two codes of the evolution in time of the spatial precipitate distributions 

are in qualitative agreement, although the internal models and algorithms used by the two 

codes are different.  

The most important discrepancies between Crunch and Hytec results are found to be related to 

the surface area models used to describe the dissolution/precipitation of secondary minerals 

(Ca-oxalate in the present study) and more generally to the kinetic description of such 

secondary precipitation processes. This observation pinpoints the importance of properly 
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describing and simulating the way the texture evolves in porous medium when porosity 

undergoes significant variations. In particular, the use of a chemical equilibrium assumption 

in modeling systems with strong cementation is questionable, since reactive surface areas 

markedly decrease and should thus limit reaction rates. 

In order to progress further into the preparation of this experiment and associated numerical 

benchmarking, Hytec and Crunch are presently modified in order to include an extended set 

of surface area models. The numerical benchmarking will also be extended to a third 

numerical tool, the ALLIANCES platform [36, 37]. 
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Table captions 

 
Table 1: Properties of the different regions (Q1, Q2 and Q3, see Figure 1) of porous medium 

after the first steps of dimensioning. 

 

Table 2: Definition of solution chemistry and boundary Darcy velocity for inlet 1 and 2.  

 

Table 3: Equilibrium constants for all the considered reactions. The experiment is simulated at 

a constant temperature (25°C). 

 

Table 4: Main differences between Hytec and Crunch concerning models for diffusion and 

intrinsic permeability variations with porosity. 

 

Table 5: Main differences between Hytec and Crunch concerning models for kinetics and 

reactive surface area. Parameter values for Crunch were Abulk = 1000 m2/m3 and  

krate = ±10-5 mol.m-2.s-1. For Hytec, krate ranging from ±10-5 mol.m-2.s-1 to ±10-9 mol.m-2.s-1 

were tested, As = 1 m2.g-1, nucleus = 1 m2.m-3
solution. 
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Figure captions 

 
Figure 1: Schematic view of the experimental set-up from Trotignon et al. study [14]. The set-

up is a square (14 cm of edge size) composed of quartz grains except for a zone (Q2) 

composed of quartz and portlandite grains (2 cm of width). Lines labeled ‘Line 1’ (y=7.0 cm) 

and ‘Line 2’ (x=9.5 cm) (resp. node ‘N’ (x=9.5 cm; y=10.8 cm)) are test lines (resp. test node) 

on which specific profiles will be compared. 

 

Figure 2: Linear profiles of x-component (a) and y-component (b) of Darcy velocity with 

Crunch (bold line) and Hytec (symbols) recorded on Line 1. 

 

Figure 3: Concentration profiles of ‘Tracer’ injected by inlet 2 recorded on Line 1 with Hytec 

(symbols) and Crunch (lines) during the first 3 days. 

 

Figure 4: Evolution of portlandite volume fraction simulated with Crunch (upper row) and 

Hytec (lower row) after 5 days (a), 20 days (b) and 50 days (c) without porosity update. 

 

Figure 5: Evolution of calcium oxalate volume fraction simulated with Crunch (upper row) 

and Hytec (lower row) after 5 days (a), 20 days (b) and 50 days (c) without porosity update. 

 

Figure 6: Variation with time of the summed concentration of portlandite and Ca-oxalate over 

the entire reaction chamber simulated with Crunch (continuous lines) and Hytec (dotted lines) 

without porosity update (a) and with porosity update (b). 
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Figure 7: Evolution of portlandite volume fraction with time (5, 10, 30 and 40 days from the 

left to the right) with porosity update. The upper row presents Crunch results and the lower 

one is Hytec’s results. 

 

Figure 8: Evolution of Ca-oxalate volume fraction and flow rate fields with time (10, 20, 

40and 70 days) predicted with Crunch with porosity update. 

 

Figure 9: Evolution of Ca-oxalate volume fraction and flow rate fields with time (10, 40, 70 

and 90 days) predicted with Hytec with porosity update. 

 

Figure 10: Permeability variation during the experiment simulated with Crunch (a) and Hytec 

(b) on a vertical line located in the clogging obstacle (see Line 2 in Figure 1). 

 

Figure 11: Temporal profiles of porosity (a) and mineral volume fraction (b) recorded on node 

N (see Figure 1) predicted with Hytec (equilibrium hypothesis, white symbols) and Crunch 

(dark symbols). 

 

Figure 12: Temporal profiles of porosity (a) and mineral volume fraction (b) recorded on node 

N (see Figure 1) predicted with Hytec (kinetic hypothesis, white symbols) and Crunch (dark 

symbols). 
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Table 1 

 

 Q1 Q2 Q3 

Width (X-axis) (mm) 80 20 40 

Initial porosity ω0  0.3 0.19 0.3 

Initial permeability (m.s-1) 1.0 10-5 1.64 10-6 1.0 10-5 

Dispersivity α (mm) 20 20 20 

Initial effective diffusion coefficient D0 (m².s-1) 1.0 10-9 1.0 10-9 1.0 10-9 

Storage coefficient  (m-1) (not specified with Crunch) 1.0 10-2 1.0 10-2 1.0 10-2 

Quartz concentration (molalsolution) 102.8 196 102.8 

Portlandite concentration (molalsolution) 0 17.51 0 

Initial pH 6.8 12.5 6.8 
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Table 2 

 

 Inlet 1 Inlet 2 

pH 6.8 6.8 

Na+ (total) molal 0.02 0.8 

Ca2+ (total) molal 0 0 

Cl- (total) molal 0.02 0 

C2O4
2- (total) molal 0 0.4 

Darcy velocity vector (Ux, Uy) m.s-1 (2 10-7, 0) (0, 4 10-7) 
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Table 3 

 

Reaction Log10K (25°C) 

CaC2O4.H2O ↔ Ca2+ + C2O4
2- + H2O -8.63 

Ca(OH)2 (aq) + 2H+ ↔ Ca2+ + 2 H2O 22.55 

H2C2O4 (aq) ↔ 2 H+ + C2O4
2- -5.42 

HC2O4
- ↔ H+ + C2O4

2- -4.19 

CaC2O4 (aq) ↔ Ca2+ + C2O4
2- -3.00 

Ca(C2O4)2
2- ↔ Ca2+ + 2 C2O4

2- -8.1 

Ca(C2O4)3
4- ↔ Ca2+ + 3 C2O4

2- -8.2 

NaC2O4
- ↔ Na+ + C2O4

2- -1 

CaCl+ ↔ Ca2+ + Cl- 0.29 

CaCl2 (aq) ↔ Ca2+ + 2 Cl- 0.64 

CaOH+ + H + ↔ Ca2+ + H2O 12.83 

NaCl (aq) ↔ Na+ + Cl- 0.78 

NaOH (aq) + H + ↔ Na+ + H2O 14.2 

HCl (aq) ↔ H+ + Cl- 0.71 
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Table 4 

 

 HYTEC CRUNCH 

Diffusion laws (m²/s) 

Archie’s modified law: 
a

c

c
eDD 
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De(ω0) : effective diffusion coefficient 
See text for parameters 
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D : effective diffusion coefficient 
D0 : molecular diffusion coefficient 

F: Formation factor 
mF −=ω  

m: cementation coefficient 

Permeability laws (m2) 

Kozeny-Carman modified equation: 
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Table 5 

HYTEC CRUNCH 
Local Equilibrium 

 Infinite surface area  
whatever the porosity 

Not available in the current version 

Kinetics 
















−−=
K

Q
kAr s

ratess 1  

rs:dissolution/precipitation reaction rate 
krate: dissolution/precipitation rate constant  

(in Hytec, kdissol and kprecip may take different values) 
Qs: ion activity product 
K: equilibrium constant 
As: specific surface area 

 
- Abulk (m

2.m-3
solution) 

 
Hypothesis of homogeneous, mono-

disperse suspension of spherical 
particles:  

 
As = 3/ρ r   and 

Abulk = As C 
 

C: particle concentration 
ρ: particle density 

r: radius of spherical particle  
(supposed constant) 

- As (m
2.g -1mineral phase or  

m2.mol-1
mineral phase) 
 

A nucleus is defined in m2.m-3
solution to 

make possible secondary mineral 
precipitation 

- Abulk (m
2.m-3

 porous medium) 

mm

mbulk
s MW

VAA ω= , 

Vm: molar volume of the solid phase 
ωm: porosity 

MWm: molar weight of the phase 
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φm: mineral volume fraction 
φm,0: initial mineral volume fraction 
For secondary minerals: φm,0 = 0.01 
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For secondary minerals: Abulk,0  = 100 m2.m-3 
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